博客
关于我
机器学习之逻辑回归(Logistic Regression)精讲(附代码)
阅读量:760 次
发布时间:2019-03-23

本文共 447 字,大约阅读时间需要 1 分钟。

逻辑回归是一种广泛应用于分类任务的机器学习模型,尽管其名称中包含“回归”一词,但其核心目标与回归分析有所不同。逻辑回归专注于预测目标变量的取值属于其中一个类别,适用于解决二分类问题。

基本原理

逻辑回归的核心假设函数采用了sigmoid变换,将输入特征映射到0和1之间的概率范围。具体而言,假设函数的形式如下:

h(θ(x)) = 1

这表示在给定特征向量x和参数θ的条件下,模型预测的类别概率为1的可能性。通过sigmoid函数的转换,逻辑回归不仅能够处理非线性关系,还能将输出限定在(0,1)区间内,使其适合分类任务。

这个假设函数的设计考虑了以下关键点:

  • 非线性映射:sigmoid函数能够将线性模型扩展到非线性域,从而捕捉数据中的复杂模式。
  • 输出范围的限制:输出值被限制在(0,1)之间,符合分类任务中两类别的对立关系。
  • 可微性:sigmoid函数及其导数在实际应用中对优化算法(如梯度下降)具有重要意义。
  • 通过上述机制,逻辑回归能够有效区分两类别数据,并在实际应用中表现出较强的性能。

    转载地址:http://krlzk.baihongyu.com/

    你可能感兴趣的文章
    Mysql索引、命令重点介绍
    查看>>
    mysql索引、索引优化(这一篇包括所有)
    查看>>
    Mysql索引一篇就够了
    查看>>
    MySQL索引一篇带你彻底搞懂(一次讲清实现原理加优化实战,面试必问)
    查看>>
    MySQL索引下沉:提升查询性能的隐藏秘
    查看>>
    MySql索引为什么使用B+树
    查看>>
    MySQL索引为什么是B+树
    查看>>
    WARNING!VisualDDK wizard was unable to find any DDK/WDK installed on your system.
    查看>>
    Mysql索引优化
    查看>>
    MySQl索引创建
    查看>>
    mysql索引创建及使用注意事项
    查看>>
    mysql索引创建和使用注意事项
    查看>>
    MySQL索引原理以及查询优化
    查看>>
    Mysql索引合并(index merge)导致的死锁问题
    查看>>
    MySQL索引和查询优化
    查看>>
    mysql索引底层数据结构和算法
    查看>>
    Mysql索引底层结构的分析
    查看>>
    MySQL索引底层:B+树详解
    查看>>
    Mysql索引总结
    查看>>
    mysql索引最左匹配原则理解以及常见的sql使用的索引情况的实测
    查看>>